数学基础之数列求和

错位相减

证明等比数列求和 : k=0napk=a1pn+11p\sum_{k=0}^{n}ap^{k} = a\frac{1-p^{n+1}}{1-p}

证明

Sn=k=0napk=ak=0npkpSn=ak=0npk+1=ak=1n+1pk(1p)Sn=a(1pn+1)Sn=a1pn+11pS_n =\sum_{k=0}^{n}ap^{k} = a\sum_{k=0}^{n}p^k\\ pS_n = a\sum_{k=0}^{n}p^{k+1} = a\sum_{k=1}^{n+1}p^{k}\\ (1-p)S_n = a(1 - p^{n+1})\\ S_n = a\frac{1 - p^{n+1}}{1-p}

更一般的, 化简 : k=0nkpk\sum_{k=0}^{n}kp^k

Sn=k=0nkpkpSn=k=0nkpk+1=k=1n+1(k1)pk(1p)Sn=k=0nkpkk=1n+1(k1)pk(1p)Sn=k=1nkpknpn+1k=1n(k1)pk(1p)Sn=k=1npknpn+1(1p)Sn=p1pn1pnpn+1Sn=11p(p1pn1pnpn+1)\begin{aligned} S_n = \sum_{k=0}^{n}kp^k\\ pS_n = \sum_{k=0}^{n}kp^{k+1} = \sum_{k=1}^{n + 1}(k-1)p^{k}\\ (1-p)S_n = \sum_{k=0}^{n}kp^k - \sum_{k=1}^{n + 1}(k-1)p^{k}\\ (1-p)S_n = \sum_{k=1}^{n}kp^k - np^{n + 1} - \sum_{k=1}^{n}(k-1)p^{k}\\ (1-p)S_n = \sum_{k=1}^{n}p^k - np^{n + 1}\\ (1-p)S_n = p\frac{1-p^n}{1-p} - np^{n + 1}\\ S_n = \frac{1}{1-p}(p\frac{1-p^n}{1-p} - np^{n + 1})\\ \end{aligned}

裂项相消

化简 Sn=k=1n(ak+b)qkS_n = \sum_{k=1}^{n}(ak + b)q^k

(ak+b)qk=f(k+1)qk+1f(k)qk,f(k)=Ak+B(ak+b)qk=(qf(k+1)f(k))qkak+b=qf(k+1)f(k)=qA(k+1)+qBAkBak+b=qf(k+1)f(k)=(q1)Ak+qA+(q1)BA=aq1,B=bqAq+1=bqaq1q1f(x)k=1nak=f(n+1)qn+1f(1)q设\quad (ak+b)q^k = f(k + 1)q^{k+1} - f(k)q^{k} , f(k) = Ak + B\\ (ak+b)q^k = (qf(k + 1) - f(k))q^{k}\\ ak+b = qf(k+1) - f(k) = qA(k+1) + qB - Ak - B\\ ak+b = qf(k+1) - f(k) = (q-1)Ak + qA + (q - 1)B\\ A = \frac{a}{q-1}, B = \frac{b - qA}{q+1} = \frac{b - q\frac{a}{q-1}}{q-1}\\ f(x) 已知\\ \sum_{k=1}^{n}a_k = f(n+1)q^{n + 1} - f(1)q\\