错位相减
证明等比数列求和 : ∑k=0napk=a1−p1−pn+1
证明
Sn=k=0∑napk=ak=0∑npkpSn=ak=0∑npk+1=ak=1∑n+1pk(1−p)Sn=a(1−pn+1)Sn=a1−p1−pn+1
更一般的, 化简 : ∑k=0nkpk
Sn=k=0∑nkpkpSn=k=0∑nkpk+1=k=1∑n+1(k−1)pk(1−p)Sn=k=0∑nkpk−k=1∑n+1(k−1)pk(1−p)Sn=k=1∑nkpk−npn+1−k=1∑n(k−1)pk(1−p)Sn=k=1∑npk−npn+1(1−p)Sn=p1−p1−pn−npn+1Sn=1−p1(p1−p1−pn−npn+1)
裂项相消
化简 Sn=∑k=1n(ak+b)qk
设(ak+b)qk=f(k+1)qk+1−f(k)qk,f(k)=Ak+B(ak+b)qk=(qf(k+1)−f(k))qkak+b=qf(k+1)−f(k)=qA(k+1)+qB−Ak−Bak+b=qf(k+1)−f(k)=(q−1)Ak+qA+(q−1)BA=q−1a,B=q+1b−qA=q−1b−qq−1af(x)已知k=1∑nak=f(n+1)qn+1−f(1)q